首页 > 华师大 > 初三 > 数学 > 上学期 > 正文

Video Player is loading.
Current Time 0:00
Duration 0:00
Loaded: 0%
Stream Type LIVE
Remaining Time 0:00
 
1x
  • Chapters
  • descriptions off, selected
  • captions off, selected

    尊敬的用户,请先登录!

    登录

    如您没有账号请点击注册

    注册

    初三数学上册第23课《一元二次方程复习与整理》

    点赞 收藏 评价 测速
    课堂提问

    【此视频课程与人教版第22课的知识点相同,同样适用于华师大第23课,敬请放心学习。】

    课本内容
    《一元二次方程复习与整理》

    一元二次方程的概念定义:一个未知数,最高次数是2,整式方程
    一般形式:ax2+bx+c=0(a≠0)
    一元二次方程的解法
    直接开平方法:适应于形如(x-k)2=b(b>0)型
    配方法:      适应于任何一个一元二次方程
    公式法:      适应于任何一个一元二次方程
    因式分解法:  适应于左边能分解为两个一次式的积,右边是0的方程
    1、判断下列方程是不是一元二次方程。
    (1)4x=1/2x2+√3=0    (2)3x2-y-1=0
    (3)ax2+bx+c=0        (4)x+1/x=0
    2、关于y的一元二次方程2y(y-3)=-4的一般形式是_________,它的二次项系数是____,一次项是______,常数项是______
    3、若x=2是方程x2+ax-8=0的解,则a=_________
    巩固提高
    1、若(m+2)x2+(m-2)x-2=0是关于x的一元二次方程则m_____________.
    2、已知关于x的方程(m2-1)x2+(m-1)x-2m+1=0,当m______时是一元二次方程,当m=________时时一元一次方程,当m=________时,x=0
    二、一元二次方程的几种解法
    引例:选择较简便的方法解下列方程
    (1)5x2-3√2x=0 (运用因式分解法)
    (2)3x2-2=0     (运用直接开平方法)
    (3)x2-4x=6     (运用因式分解法)
    (4)x2-2x-3=0   (运用因式分解法)
    (5)2x2+7x-7=0  (运用公式法)
    规律总结
    1、一般地,当一元二次方程一次项系数为0时(ax2+c=0),应使用________;
    2、若常数项为0(ax2+bx=0),应选用_________;
    3、若一次项系数和常数项都不为0(ax2+bx+c=0),先化为一般式,看一边的整式是否容易因式分解,若容易,宜选用______________,不然选用_______________;
    4、当二次项系数是1,且一次项系数是偶数时,用_____________比较简单,
    5、公式法和配方法是通法,对任何一元二次方程都适用,但不一定是最简单的。因此在解一元二次方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法或配方法。
    练:选择适当的方法解下列方程:
    1、(x-2)2-9
    2、t2-4t=5
    3、9(2m+3)2-4(2m-5)2=0
    4、(x-2)2+3(x-2)-10=0
    例1:当k取什么值时,已知关于x的方程:
         2x2-(4k+1)x+2k2-1=0
    (1)方程有两个不相等的实根;
    (2)方程有两个相等的实根;
    (3)方程无实根;
    例、求证:关于x的方程:x2-(m+2)x+2m-1=0有两个不相等的实根
    四、列一元二次方程解应用题
    列一元二次方程解应用题的步骤
    即审、设、列、解、检、答
    这里要特别注意:在列一元二次方程解应用题时,由于所得的根一般有两个,所以要检验这两个根是否符合实际问题的要求。

    评论0

    点此登录 后即可畅所欲言

    联系我们 版权说明 帮助中心 在线客服

    ©2016 同桌100 All Rights Reserved

    在线咨询
    4006-3456-99热线电话
    建议反馈
    返回顶部