【此视频课程与人教版第22课的知识点相同,同样适用于华师大第23课,敬请放心学习。】
课程内容
《一元二次方程的解法》
知识回顾:
1、整式方程中只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程。
2、一般地,任何一个关于x的一元二次方程都可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式,我们称之为一元二次方程的一般形式。
探究新知:
认识了一元二次方程,接下来我们就要探求一元二次方程的解。
方程解的定义是怎样的呢?
能使方程左右两边相等的未知数的值就叫方程的解。
问题1:要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?
解:设邀请了x个队参加比赛,根据题意得:
1/2x(x-1)=28
即:x2-x=56
当x=8时,x2-x=56,所以,x=8是x2-x=56的解,一元二次方程的解也叫做一元二次方程的根。
思考:
你能否说出下列方程的解?
(1)x2-36=0 (2)x2+36=0 (3)(x-6)2=0
练习:
1、下面哪些数是方程x2-x-6=0的根?
-4 -3 -2 -1 0 1 2 3 4
2、你能写出方程x2-x=0的根吗?(即:平方后是它本身的数是哪些?)
例题讲解
例1:已知关于x的一元二次方程(a-1)x2+x+a2-1=0的一根是0,则a的值为( )。
A、1 B、-1 C、1或-1 D、0
例2:关于x的方程(m+2)2x2+3m2x+m2-4=0有一根为0,则2m2-4m+3的值为多少?
例3:已知m,n都是方程x2+2006x-2008=0的根,试求(m2+2006m-2007)(n2+2006n+2007)的值。
练习:
1、若a+b+c=0,则一元二次方程ax2+bx+c=0必有一解为_____。
2、若a-b+c=0,则一元二次方程ax2+bx+c=0必有一解为_____。
3、若4a+2b+c=0,则一元二次方程ax2+bx+c=0必有一解为_____。
4、根据下表的对应值,试判断一元二次方程ax2+bx+c=0的一解的范围是( )
A、3<x<3.23 B、3.23<x<3.24 C、3.24<x<3.25 D、3.25<x<3.26
1、认识了一元二次方程的解也叫做一元二次方程的根。
2、会检验一个数是不是一个一元二次方程的根。
3、能根据一元二次方程的根的定义代入方程求出待定字母的取值。
此内容正在抓紧时间编辑中,请耐心等待
马老师
女,中教高级职称
从教30年,数学教研组长,市级骨干教师。曾在全国青年教师课堂教学大赛中获奖,具有丰富的数学教学经验。