首页 > 人教版 > 高中 > 数学 > 必修5 > 正文

Video Player is loading.
Current Time 0:00
Duration 0:00
Loaded: 0%
Stream Type LIVE
Remaining Time 0:00
 
1x
  • Chapters
  • descriptions off, selected
  • captions off, selected

    尊敬的用户,请先登录!

    登录

    如您没有账号请点击注册

    注册

    高中数学第三章3.3《简单的线性规划问题》(必修5)

    点赞 收藏 评价 测速
    课堂提问

    课程内容

    《简单的线性规划问题》
    一、提出问题:
    若实数x,y满足不等式组
    1、上述不等式组表示的平面区域是什么?
    2、求z=2x+y的最大值与最小值。
    二、有关定义
    约束条件、线性约束条件、目标函数、线性目标函数
    由x,y的不等式组成的不等式组称为x,y的约束条件。
    欲达到最大值或最小值所涉及的变量x,y的解析式称为目标函数。
    线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
    可行解:满足线性约束条件的解(x,y)叫可行解。
    最优解:使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。
    三、求线性目标函数的最值或取值范围
    原题:求z=2x+y的最大值与最小值(12与3)
    变题1:上例若改成求z=x-2y的最大值、最小值呢?
    变题2:若改为求z=3x+5y的最大值、最小值呢?
    四、实际应用
    例4:一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t,硝酸盐18t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐15t。现库存磷酸盐10t,硝酸盐66t。若生产1车皮甲种肥料。产生的利润为10000元;若生产1车皮乙种肥料,产生的利润为5000元。在此基础上,分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?
    思考题:已知:函数f(x)=ax2-c,-4≤f(1)≤-1,-1≤f(2)≤5,求:f(3)的取值范围。
    总结:
    解线性规划问题的一般步骤:
    第一步:在平面直角坐标系中作出可行区域;
    第二步:在可行区域内找到最优解所对应的点;
    第三步:解方程的最优解,从而求出目标函数的最大值或最小值。
    解线性规划应用问题的一般步骤:
    (1)理清思路,列出表格;
    (2)设好变量x,y,并列出关于x,y的不等式组和目标函数z的解析式;
    (3)由二元一次不等式组表示的平面区域作出可行域;
    (4)在可行域内求目标函数的最优解;
    (5)还原成实际问题(准确作图,准确计算)。
    五、课堂练习
    已知x,y满足不等式组
    求z=3x+5y的最大值和最小值。

    评论3

    点此登录 后即可畅所欲言

    讲的很好

    柠檬不萌

    2020-06-02 18:42:50

    [宁夏银川市] 好

    134****4989

    2019-08-21 22:43:08

    [江西省新余市] 干嘛总播老师?

    zry19980606

    2013-10-22 18:24:39

    联系我们 版权说明 帮助中心 在线客服

    ©2016 同桌100 All Rights Reserved

    在线咨询
    4006-3456-99热线电话
    建议反馈
    返回顶部