首页 > 人教版 > 高中 > 数学 > 必修5 > 正文

Video Player is loading.
Current Time 0:00
Duration 0:00
Loaded: 0%
Stream Type LIVE
Remaining Time 0:00
 
1x
  • Chapters
  • descriptions off, selected
  • captions off, selected

    尊敬的用户,请先登录!

    登录

    如您没有账号请点击注册

    注册

    高中数学第二章2.4《等比数列的性质及应用》(必修5)

    点赞 收藏 评价 测速
    课堂提问

    课程内容

    《等比数列的性质及应用》
    复习:
    1、已知a1,n,q,则
    Sn=na1, (q=1)
    Sn=a1·(1-qn)/(1-q),(q≠1)
    已知a1,an,q,则
    Sn=na1, (q=1)
    Sn=(a1-anq)/(1-q),(q≠1)
    2、对含字母的题目一般要分别考虑q=1和q≠1两种情况。
    例1:在等比数列{an}中,公比为q,其前n项和为Sn,若数列{Sn}是等差数列,求公比q。
    一、等差数列性质回顾
    等差数列的性质:设有等差数列{an}公差为d,前n项和为Sn
    1、若m,n,p,q∈N*,m+n=p+q,则am+an=ap+aq
    2、数列{Sn/n}也是等差数列,公差d/2
    3、数列Sk,S2k-Sk,S3k-S2k,……也成等差数列,公差为k2d
    4、若项数为2n(n≥2,n∈N),S-S=nd
    若项数为2n+1(n≥2,n∈N),S/S=(n+1)/n
    二、等比数列的性质
    等比数列的性质:设有等比数列{an}公比为q,前n项和为Sn
    1、若m,n,p,r∈N*,m+n=p+r,则aman=apar
    2、数列Sk,S2k-Sk,S3k-S2k,……如果不是常数列{0},也成等比数列,公比为qk
    3、若项数为2n(n≥2,n∈N),S/S=q
    4、{λan}(λ≠0),{|an|}分别是等比数列,公比分别为q和|q|。
    5、若{an}和{bn}分别是公比为q和p的等比数列,则数列{an·bn},{an/bn}仍是等比数列,它们的公比分别是pq,q/p。
    6、当a1>0,q>0或a1<0,0<q<1时为递增数列;当a1>0,0<q<1或a1<0,q>0时为递减数列;当q=1时为常数列,当q<0时为摆动数列。
    典型例题
    例1:在等比数列{an}中,已知a7·a12=5,则a8·a9·a10·a11等于(   )
         A、10     B、25     C、50     D、75
    例2:已知等比数列{an}的前三项和为168,a2-a5=42,求a5与a7的等比中项。
    例3:已知某等差数列的第1,2,4项成等比数列,求证该数列的第4,6,9项也成等比数列。
    例4:在8/3和27/2之间插入三个数,使这5个数成等比数列,求插入的这三个数的乘积。
    练习
    1、已知一个等比数列的前n项和为12,前2n项和为48,求其前3n项和。
    2、在等比数列{an}中,若a1·a2·a3……a99=299,求a50
    3、已知一个等比数列的首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的公比为(  ),项数n=(  )。

    联系我们 版权说明 帮助中心 在线客服

    ©2016 同桌100 All Rights Reserved

    在线咨询
    4006-3456-99热线电话
    建议反馈
    返回顶部